Tecidos musculares
As células dos tecidos musculares são alongadas e recebem o nome de fibras musculares ou miócitos. Em seu citoplasma, são ricas em dois tipos de filamento protéico: os de actina e os de miosina, responsáveis pela grande capacidade de contração e distensão dessas células.
Quando um músculo é estimulado a se contrair, os filamentos de actina deslizam entre os filamentos de miosina. A célula diminui em tamanho, caracterizando a contração.
Tipos de tecido muscular
Há três tipos de tecido muscular: estriado esquelético, estriado cardíaco e liso. Cada um deles tem características próprias, adequadas ao papel que desempenham no organismo.
Tecido muscular estriado esquelético
Um músculo esquelético é um pacote de longas fibras. Cada uma delas é uma célula dotada de muitos núcleos, chamado miócitos multinucleados. Um fibra muscular pode medir vários centímetros de comprimento, por 50 mm de espessura.
A célula muscular estriada apresenta, no seu citoplasma, pacotes de finíssimas fibras contráteis, as miofibrilas, dispostas longitudinalmente. Cada miofibrila corresponde a um conjunto de dois tipos principais de proteínas: as miosina, espessas, e as actinas, finas. Esses proteínas estão organizados de tal modo que originam bandas transversais, claras e escuras, características das células musculares estriadas, tanto as esqueléticas como as cardíacas.
Os filamentos de miosina formam bandas escuras, chamadas anisotrópicas (banda A), e os de actina, bandas claras, chamadas isotrópicas (banda I).
No centro de cada banda I aparece uma linha mais escura, chamada linha Z. O intervalo entre duas linhas Z consecutivas constitui um miômetro ou sarcômero e correspondem à unidade contrátil da célula muscular.
No centro de cada banda A existe uma faixa mais clara, chamada banda H, bem visível nas células musculares relaxadas e que vai desaparecendo à medida que a contração muscular ocorre.
O encurtamento dos sarcômeros ocorre em função do deslizamento dos miofilamentos finos sobre os grosso, havendo maior sobreposição entre eles: a banda I diminui de tamanho, pois os filamentos de actina deslizam sobre os de miosina, penetram na banda A e reduzem a largura da banda H.
A membrana plasmática da célula muscular estriada esquelética costuma ser chamada sarcolema (do grego, sarcos, carne).
Exercícios e o aumento da musculatura esquelética
Mas o que aumenta: o número de células no músculo ou o volume das células já existentes?
A atividade física estimula as células musculares esqueléticas já existentes a produzirem novas miofibrilas, o que ocasiona aumento do volume da célula e conseqüentemente do músculo. No indivíduo adulto, as células da musculatura esquelética não se dividem mais. No entanto, existem células especiais, chamadas satélites, que são mononucleadas e pequenas e se localizam no conjuntivo que envolve os miócitos. Em situações muito especiais, quando o músculo é submetido a exercícios intensos, essas células podem se multiplicar e algumas delas se fundir com as fibras musculares já existentes, contribuindo também para o aumento do músculo.
As células satélites são importantes nos processos de regeneração da musculatura esquelética quando ocorrem lesões.
Tecido muscular estriado cardíaco
Essas células musculares são menores e ramificadas, intimamente unidas entre si por estruturas especializadas e típicas da musculatura cardíaca: os discos intercalares, que fazem a conexão elétrica entre todas as células do coração. Assim, se uma célula receber um estímulo suficientemente forte, ele é transmitido a todas as outras células e o coração como um todo se contrai. Essa transmissão do estímulo é feita por canais de passagem de água e íons entre as células, que facilita a difusão do sinal iônico entre uma célula e outra, determinando a onda rítmica de contração das células. Os discos intercalares possuem estruturas de adesão entre células que as mantêm unidas mesmo durante o vigoroso processo de contração da musculatura cardíaca.
As células musculares cardíacas são capazes de auto-estimulação, não dependendo de um estímulo nervoso para iniciar a contração. As contrações rítmicas do coração são geradas e conduzidas por uma rede de células musculares cardíacas modificadas que se localizam logo abaixo do endocárdio, tecido que reveste internamente o coração.
Existem numerosas terminações nervosas no coração, mas o sistema nervoso atua apenas regulando o ritmo cardíaco às necessidades do organismo.
Tecido muscular liso ou não-estriado
A Fisiologia e o Mecanismo da Contração Muscular
Os músculos esqueléticos são compostos de fibras musculares que são organizadas em feixes, chamados de fascículos. Os miofilamentos compreendem as miofibrilas, que por sua vez são agrupadas juntas para formar as fibras musculares. Cada fibra possui uma cobertura ou membrana, o sarcolema, e é composta de uma substância semelhante a gelatina, sarcoplasma. Centenas de miofibrilas contráteis e outras estruturas importantes, tais como as mitocôndrias e o retículo sarcoplasmático, estão inclusas no sarcoplasma. A miofibrila contrátil é composta de unidades, e cada unidade é denominada um sarcômero. Cada miofibrila, contém muitos miofilamentos. Os miofilamentos são fios finos de duas moléculas de proteínas, actina(filamentos finos) e miosina (filamentos grossos).
A fisiologia da contração muscular explica os fatores físicos e químicos responsáveis pela origem, desenvolvimento e continuação de qualquer tipo de vida. Na fisiologia humana, é explicado as características e mecanismos específicos do corpo humano, que o fazem ser um ser vivo. O próprio fato de que permanecemos vivos está quase além do nosso controle, pois a fome nos faz procurar alimento e o medo nos faz buscar refúgio. As sensações de frio nos fazem procurar calor e outras forças nos impelem a procurar companhia e nos reproduzir. Assim, o ser humano é, na verdade um autônomo e o fato de sermos organismos com sensações, sentimentos e conhecimento é parte dessa seqüência automática da vida; esses atributos especiais nos permitem viver sob condições extremamente variadas que, de outra forma, tornariam a vida impossível.
A fisiologia da contração muscular ocorre por várias etapas e, do estímulo da contração muscular até a sua execução, as etapas são as seguintes:
1) Um potencial de ação trafega ao longo de um nervo motor até suas terminações nas fibras musculares;
2) Em cada terminação, o nervo secreta uma pequena quantidade de substância neurotransmissora, a acetilcolina;
3) Essa acetilcolina atua sobre uma área localizada na membrana da fibra muscular, abrindo numerosos canais acetilcolina-dependentes dentro de moléculas protéicas na membrana da fibra muscular;
4) A abertura destes canais permite que uma grande quantidade de íons sódio flua para dentro da membrana da fibra muscular no ponto terminal neural. Isso desencadeia potencial de ação na fibra muscular;
5) O potencial de ação cursa ao longo da membrana da fibra muscular da mesma forma como o potencial de ação cursa pelas membranas neurais;
6) O potencial de ação despolariza a membrana da fibra muscular e também passa para profundidade da fibra muscular, onde o faz com que o retículo sarcoplasmático libere para as miofibrilas grande quantidade de íons cálcio, que estavam armazenados no interior do retículo sarcoplasmático;
7) Os íons cálcio provocam grandes forças atrativas entre os filamentos de actina e miosina, fazendo com que eles deslizem entre si, o que constitui o processo contrátil;
8) Após fração de segundo, os íons cálcio são bombeados de volta para o retículo sarcoplasmático, onde permanecem armazenados até que um novo potencial de ação chegue; essa remoção dos íons cálcio da vizinhança das miofibrilas põe fim à contração.
O mecanismo da contração muscular será demonstrado a teoria dos filamentos deslizantes, uma série de hipóteses é admitida para explicar como os filamentos deslizantes desenvolvem tensão e encurtam-se, uma delas é a seguinte:
1) Com o sítio de ligação de ATP livre, a miosina se liga fortemente a actina;
2) Quando uma molécula de ATP se liga a miosina, a conformação da miosina e o sítio de ligação se tornam instáveis liberando a actina;
3) Quando a miosina libera a actina, o ATP é parcialmente hidrolizado (transformando-se em ADP) e a cabeça da miosina inclina-se para frente;
4) A religação com a actina provoca a liberação do ADP e a cabeça da miosina se altera novamente voltando a posição de início, pronta para mais um ciclo.
Referências:
http://www.sobiologia.com.br/conteudos/Histologia/epitelio21.php
http://www.portaleducacao.com.br/fisioterapia/artigos/6048/a-fisiologia-e-o-mecanismo-da-contracao-muscular
Nenhum comentário:
Postar um comentário